更多>>精华博文推荐
更多>>人气最旺专家

余德浩

领域:中国经济网陕西

介绍:6、工作到位。...

陈翠丽

领域:齐鲁热线

介绍:还有:公司法、产品质量法,合同法律制度、:担保法、工业产权法,消费者权益保护法、反不正当竞争法和反垄断法、会计法、税收管理法律制度、银行法,保险法、商标法、证券法律制度4.(14全国Ⅰ-38-2)进一步简政放权,深化行政审批制度改革,最大限度减少中央政府对微观事务的管理,是新一届政府推进行政体制改革的重要内容。利来国际AG,利来国际AG,利来国际AG,利来国际AG,利来国际AG,利来国际AG

www.w66.com
本站新公告利来国际AG,利来国际AG,利来国际AG,利来国际AG,利来国际AG,利来国际AG
tvm | 2019-01-23 | 阅读(473) | 评论(695)
一、教学理念的更新是重点。【阅读全文】
利来国际AG,利来国际AG,利来国际AG,利来国际AG,利来国际AG,利来国际AG
7yp | 2019-01-23 | 阅读(139) | 评论(129)
第四单元发展社会主义市场经济;;考点突破二:市场调节固有的弊端;考点突破三:整顿和规范市场秩序;如何规范市场秩序;;热点链接:我国创新和完善宏观调控方式,先后提出区间调控、定向调控精准调控、相机调控,促进经济社会发展。【阅读全文】
7ov | 2019-01-23 | 阅读(198) | 评论(513)
全国人大行使的四项职权有“最高”两字,而全国人大常委会作为全国人大的常设机关,在全国人大闭会期间行使部分职权,故其行使的四项职权没有“最高”两字。【阅读全文】
z5p | 2019-01-23 | 阅读(986) | 评论(515)
三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。【阅读全文】
yg6 | 2019-01-23 | 阅读(300) | 评论(567)
外因常包括井网部署、注采系统不完善、累积注入倍数、生产压差、采油速度以及开发中形成的边底水能量充足形成的水窜、水锥等因素。【阅读全文】
ryu | 2019-01-22 | 阅读(857) | 评论(946)
二,对于司经常性客户单位井下特种作业处和办理结算业务的物资供应处的基本人员结构和业务操作程序基本掌握,可以单独完成领导交代的工作。【阅读全文】
ac6 | 2019-01-22 | 阅读(296) | 评论(900)
试样经QUV加速老化己发生破损,基本失效。【阅读全文】
oqm | 2019-01-22 | 阅读(543) | 评论(417)
二、突出法治引领,发挥权力机关的推动作用常委会把保证宪法和法律法规的贯彻实施放在人大工作的突出位置,采取有效措施,大力推进法治禹会建设。【阅读全文】
利来国际AG,利来国际AG,利来国际AG,利来国际AG,利来国际AG,利来国际AG
oug | 2019-01-22 | 阅读(117) | 评论(874)
+3点拨:氧化还原反应方程式的书写最难的地方在于找出反应物、产物。【阅读全文】
5yp | 2019-01-21 | 阅读(188) | 评论(947)
PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2)【阅读全文】
zbs | 2019-01-21 | 阅读(577) | 评论(985)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
j4f | 2019-01-21 | 阅读(674) | 评论(832)
(见附)为了提升自己服装设计的水平,于1988年至1995年任职广州市xx制衣厂----运动服装设计。【阅读全文】
zg4 | 2019-01-21 | 阅读(328) | 评论(984)
陕西科技大学硕士学位论文0.6%t1-2]。【阅读全文】
oug | 2019-01-20 | 阅读(952) | 评论(158)
同时,对本网站原创数字产品以及本网站标识,本网站享有自主知识产权。【阅读全文】
if5 | 2019-01-20 | 阅读(799) | 评论(793)
开展保持共产党员先进性教育活动,是新时期加强党的基层组织建设,提高党员整体素质,增强党组织的创造力、凝聚力、战斗力的重大战略措施,对于我们进一步增强工作责任心、改进工作作风、提高工作效率、发挥先锋作用,将起到积极的推动作用。【阅读全文】
共5页

友情链接,当前时间:2019-01-23

利来 利来国际娱乐老牌 利来国际w66利来国际w66 利来国际在线客服 利来娱乐w66
利来w66 利来国际娱乐 利来国际娱乐官方网站 利来国际最给力老牌 利来国际
w66.com w66.com 利来国际最给利的老牌 利来 利来最给利的网站
w66.com 利来ag w66利来娱乐公司 利来网上娱乐 利来国际游戏平台
寿阳县| 安义县| 报价| 漳浦县| 兴海县| 舒兰市| 珲春市| 安顺市| 桐梓县| 贡山| 仪陇县| 深圳市| 芦山县| 正镶白旗| 会宁县| 德州市| 称多县| 华阴市| 中西区| 东乡| 青神县| 新余市| 余干县| 虹口区| 高雄市| 罗山县| 广平县| 宣汉县| 临猗县| 大丰市| 十堰市| 彰化市| 宁乡县| 漾濞| 鄂托克前旗| 苏尼特右旗| 嘉定区| 台前县| 林州市| 奈曼旗| 江门市| http://m.95871804.cn http://m.80565075.cn http://m.99232548.cn http://m.27237402.cn http://m.33532057.cn http://m.11712218.cn